Корни полного квадратного уравнения. Решение квадратных уравнений, формула корней, примеры

Некоторые задачи в математике требуют умения вычислять значение корня квадратного. К таким задачам относится решение уравнений второго порядка. В данной статье приведем эффективный метод вычисления квадратных корней и используем его при работе с формулами корней квадратного уравнения.

Что такое квадратный корень?

В математике этому понятию соответствует символ √. Исторические данные говорят, что он начал использоваться впервые приблизительно в первой половине XVI века в Германии (первый немецкий труд по алгебре Кристофа Рудольфа). Ученые полагают, что указанный символ является трансформированной латинской буквой r (radix означает "корень" на латыни).

Корень из какого-либо числа равен такому значению, квадрат которого соответствует подкоренному выражению. На языке математики это определение будет выглядеть так: √x = y, если y 2 = x.

Корень из положительного числа (x > 0) является также числом положительным (y > 0), однако если берут корень из отрицательного числа (x < 0), то его результатом уже будет комплексное число, включающее мнимую единицу i.

Приведем два простых примера:

√9 = 3, поскольку 3 2 = 9; √(-9) = 3i, поскольку i 2 = -1.

Итерационная формула Герона для нахождения значений корней квадратных

Приведенные выше примеры являются очень простыми, и вычисление корней в них не представляет никакого труда. Сложности начинают появляться уже при нахождении значений корня для любого значения, которое не может быть представлено в виде квадрата натурального числа, например √10, √11, √12, √13, не говоря уже о том, что на практике необходимо находить корни для нецелых чисел: например √(12,15), √(8,5) и так далее.

Во всех вышеназванных случаях следует применять специальный метод вычисления корня квадратного. В настоящее время таких методов известно несколько: например разложение в ряд Тейлора, деление столбиком и некоторые другие. Из всех известных методов, пожалуй, наиболее простым и эффективным является использование итерационной формулы Герона, которая также известна как вавилонский способ определения квадратных корней (существуют свидетельства, что древние вавилоняне применяли ее в своих практических вычислениях).

Пусть необходимо определить значение √x. Формула нахождения квадратного корня имеет следующий вид:

a n+1 = 1/2(a n +x/a n), где lim n->∞ (a n) => x.

Расшифруем эту математическую запись. Для вычисления √x следует взять некоторое число a 0 (оно может быть произвольным, однако для быстрого получения результата следует выбирать его таким, чтобы (a 0) 2 было максимально близко к x. Затем подставить его в указанную формулу вычисления квадратного корня и получить новое число a 1 , которое уже будет ближе к искомому значению. После этого необходимо уже a 1 подставить в выражение и получить a 2 . Эту процедуру следует повторять до получения необходимой точности.

Пример применения итерационной формулы Герона

Описанный выше алгоритм получения корня квадратного из некоторого заданного числа для многих может звучать достаточно сложно и запутанно, на деле же оказывается все гораздо проще, поскольку эта формула сходится очень быстро (особенно если выбрано удачное число a 0).

Приведем простой пример: необходимо вычислить √11. Выберем a 0 = 3, так как 3 2 = 9, что ближе к 11, чем 4 2 = 16. Подставляя в формулу, получим:

a 1 = 1/2(3 + 11/3) = 3,333333;

a 2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a 3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Дальше нет смысла продолжать вычисления, поскольку мы получили, что a 2 и a 3 начинают отличаться лишь в 5-м знаке после запятой. Таким образом, достаточно было применить всего 2 раза формулу, чтобы вычислить √11 с точностью до 0,0001.

В настоящее время широко используются калькуляторы и компьютеры для вычисления корней, тем не менее отмеченную формулу полезно запомнить, чтобы иметь возможность вручную вычислять их точное значение.

Уравнения второго порядка

Понимание того, что такое корень квадратный, и умение его вычислять используется при решении квадратных уравнений. Этими уравнениями называют равенства с одной неизвестной, общий вид которых приведен на рисунке ниже.

Здесь c, b и a представляют собой некоторые числа, причем a не должно равняться нулю, а значения c и b могут быть совершенно произвольными, в том числе и равными нулю.

Любые значения икса, удовлетворяющие указанному на рисунке равенству, называются его корнями (следует не путать это понятие с квадратным корнем √). Поскольку рассматриваемое уравнение имеет 2-й порядок (x 2), то корней для него не может быть больше, чем два числа. Рассмотрим далее в статье, как находить эти корни.

Нахождения корней квадратного уравнения (формула)

Этот способ решения рассматриваемого типа равенств также называется универсальным, или методом через дискриминант. Его можно применять для любых квадратных уравнений. Формула дискриминанта и корней квадратного уравнения имеет следующий вид:

Из нее видно, что корни зависят от значения каждого из трех коэффициентов уравнения. Более того, вычисление x 1 отличается от расчета x 2 только знаком перед корнем квадратным. Подкоренное выражение, которое равно b 2 - 4ac, является не чем иным, как дискриминантом рассматриваемого равенства. Дискриминант в формуле корней квадратного уравнения играет важную роль, поскольку он определяет число и тип решений. Так, если он равен нулю, то решение будет всего одно, если он положительный, то уравнение обладает двумя действительными корнями, наконец, отрицательный дискриминант приводит к двум комплексным корням x 1 и x 2 .

Теорема Виета или некоторые свойства корней уравнений второго порядка

В конце XVI века один из основоположников современной алгебры француз изучая уравнения второго порядка, смог получить свойства его корней. Математически их можно записать так:

x 1 + x 2 = -b / a и x 1 * x 2 = c / a.

Оба равенства легко может получить каждый, для этого необходимо лишь выполнить соответствующие математические операции с корнями, полученными через формулу с дискриминантом.

Совокупность этих двух выражений можно по праву назвать второй формулой корней квадратного уравнения, которая предоставляет возможность угадывать его решения, не используя при этом дискриминант. Здесь следует оговориться, что хотя оба выражения справедливы всегда, применять их для решения уравнения удобно только в том случае, если оно может быть разложено на множители.

Задача на закрепление полученных знаний

Решим математическую задачу, в которой продемонстрируем все приемы, обсуждаемые в статье. Условия задачи следующие: необходимо найти два числа, для которых произведение равно -13, а сумма составляет 4.

Это условие сразу напоминает о теореме Виета, применяя формулы суммы квадратных корней и их произведения, записываем:

x 1 + x 2 = -b / a = 4;

x 1 * x 2 = c / a = -13.

Если предположить, что a = 1, тогда b = -4 и c = -13. Эти коэффициенты позволяют составить уравнение второго порядка:

x 2 - 4x - 13 = 0.

Воспользуемся формулой с дискриминантом, получим следующие корни:

x 1,2 = (4 ± √D)/2, D = 16 - 4 * 1 * (-13) = 68.

То есть задача свелась к нахождению числа √68. Заметим, что 68 = 4 * 17, тогда, используя свойство квадратного корня, получим: √68 = 2√17.

Теперь воспользуемся рассмотренной формулой квадратного корня: a 0 = 4, тогда:

a 1 = 1/2(4 + 17/4) = 4,125;

a 2 = 1/2(4,125 + 17/4,125) = 4,1231.

В вычислении a 3 нет необходимости, поскольку найденные значения отличаются всего на 0,02. Таким образом, √68 = 8,246. Подставляя его в формулу для x 1,2 , получим:

x 1 = (4 + 8,246)/2 = 6,123 и x 2 = (4 - 8,246)/2 = -2,123.

Как видим, сумма найденных чисел действительно равна 4, если же найти их произведение, то оно будет равно -12,999, что удовлетворяет условию задачи с точностью до 0,001.

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

В современном обществе умение производить действия с уравнениями, содержащими переменную, возведённую в квадрат, может пригодиться во многих областях деятельности и широко применяется на практике в научных и технических разработках. Свидетельством тому может служить конструирование морских и речных судов, самолётов и ракет. При помощи подобных расчётов определяют траектории перемещения самых разных тел, в том числе и космических объектов. Примеры с решением квадратных уравнений находят применение не только в экономическом прогнозировании, при проектировании и строительстве зданий, но и в самых обычных житейских обстоятельствах. Они могут понадобиться в туристических походах, на спортивных состязаниях, в магазинах при совершении покупок и в других весьма распространённых ситуациях.

Разобьём выражение на составляющие множители

Степень уравнения определяется максимальным значением степени у переменной, которую содержит данное выражение. В случае, если она равна 2, то подобное уравнение как раз и называется квадратным.

Если изъясняться языком формул, то указанные выражения, как бы они ни выглядели, всегда можно привести к виду, когда левая часть выражения состоит из трёх слагаемых. Среди них: ax 2 (то есть переменная, возведённая в квадрат со своим коэффициентом), bx (неизвестное без квадрата со своим коэффициентом) и c (свободная составляющая, то есть обычное число). Всё это в правой части приравнивается 0. В случае, когда у подобного многочлена отсутствует одно из его составляющих слагаемых, за исключением ax 2 , оно называется неполным квадратным уравнением. Примеры с решением таких задач, значение переменных в которых найти несложно, следует рассмотреть в первую очередь.

Если выражение на вид выглядит таким образом, что слагаемых у выражения в правой части два, точнее ax 2 и bx, легче всего отыскать х вынесением переменной за скобки. Теперь наше уравнение будет выглядеть так: x(ax+b). Далее становится очевидно, что или х=0, или задача сводится к нахождению переменной из следующего выражения: ax+b=0. Указанное продиктовано одним из свойств умножения. Правило гласит, что произведение двух множителей даёт в результате 0, только если один из них равен нулю.

Пример

x=0 или 8х - 3 = 0

В результате получаем два корня уравнения: 0 и 0,375.

Уравнения такого рода могут описывать перемещение тел под действием силы тяжести, начавших движение из определённой точки, принятой за начало координат. Здесь математическая запись принимает следующую форму: y = v 0 t + gt 2 /2. Подставив необходимые значения, приравняв правую часть 0 и найдя возможные неизвестные, можно узнать время, проходящее с момента подъёма тела до момента его падения, а также многие другие величины. Но об этом мы поговорим позднее.

Разложение выражения на множители

Описанное выше правило даёт возможность решать указанные задачи и в более сложных случаях. Рассмотрим примеры с решением квадратных уравнений такого типа.

X 2 - 33x + 200 = 0

Этот квадратный трёхчлен является полным. Для начала преобразуем выражение и разложим его на множители. Их получается два: (x-8) и (x-25) = 0. В результате имеем два корня 8 и 25.

Примеры с решением квадратных уравнений в 9 классе позволяют данным методом находить переменную в выражениях не только второго, но даже третьего и четвёртого порядков.

Например: 2x 3 + 2x 2 - 18x - 18 = 0. При разложении правой части на множители с переменной, их получается три, то есть (x+1),(x-3) и (x+3).

В результате становится очевидно, что данное уравнение имеет три корня: -3; -1; 3.

Извлечение квадратного корня

Другим случаем неполного уравнения второго порядка является выражение, на языке букв представленное таким образом, что правая часть строится из составляющих ax 2 и c. Здесь для получения значения переменной свободный член переносится в правую сторону, а после этого из обеих частей равенства извлекается квадратный корень. Следует обратить внимание, что и в данном случае корней уравнения обычно бывает два. Исключением могут служить лишь только равенства, вообще не содержащие слагаемое с, где переменная равна нулю, а также варианты выражений, когда правая часть оказывается отрицательной. В последнем случае решений вообще не существует, так как указанные выше действия невозможно производить с корнями. Примеры решений квадратных уравнений такого типа необходимо рассмотреть.

В данном случае корнями уравнения окажутся числа -4 и 4.

Вычисление пощади земельного участка

Потребность в подобного рода вычислениях появилась в глубокой древности, ведь развитие математики во многом в те далёкие времена было обусловлено необходимостью определять с наибольшей точностью площади и периметры земельных участков.

Примеры с решением квадратных уравнений, составленных на основе задач такого рода, следует рассмотреть и нам.

Итак, допустим имеется прямоугольный участок земли, длина которого на 16 метров больше, чем ширина. Следует найти длину, ширину и периметр участка, если известно, что его площадь равна 612 м 2 .

Приступая к делу, сначала составим необходимое уравнение. Обозначим за х ширину участка, тогда его длина окажется (х+16). Из написанного следует, что площадь определяется выражением х(х+16), что, согласно условию нашей задачи, составляет 612. Это значит, что х(х+16) = 612.

Решение полных квадратных уравнений, а данное выражение является именно таковым, не может производиться прежним способом. Почему? Хотя левая часть его по-прежнему содержит два множителя, произведение их совсем не равно 0, поэтому здесь применяются другие методы.

Дискриминант

Прежде всего произведём необходимые преобразования, тогда внешний вид данного выражения будет выглядеть таким образом: x 2 + 16x - 612 = 0. Это значит, мы получили выражение в форме, соответствующей указанному ранее стандарту, где a=1, b=16, c=-612.

Это может стать примером решения квадратных уравнений через дискриминант. Здесь необходимые расчёты производятся по схеме: D = b 2 - 4ac. Данная вспомогательная величина не просто даёт возможность найти искомые величины в уравнении второго порядка, она определяет количество возможных вариантов. В случае, если D>0, их два; при D=0 существует один корень. В случае, если D<0, никаких шансов для решения у уравнения вообще не имеется.

О корнях и их формуле

В нашем случае дискриминант равен: 256 - 4(-612) = 2704. Это говорит о том, что ответ у нашей задачи существует. Если знать, к , решение квадратных уравнений нужно продолжать с применением ниже приведённой формулы. Она позволяет вычислить корни.

Это значит, что в представленном случае: x 1 =18, x 2 =-34. Второй вариант в данной дилемме не может являться решением, потому что размеры земельного участка не могут измеряться в отрицательных величинах, значит х (то есть ширина участка) равна 18 м. Отсюда вычисляем длину: 18+16=34, и периметр 2(34+18)=104(м 2).

Примеры и задачи

Продолжаем изучение квадратных уравнений. Примеры и подробное решение нескольких из них будут приведены далее.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Перенесём всё в левую часть равенства, сделаем преобразование, то есть получим вид уравнения, который принято именовать стандартным, и приравняем его нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Сложив подобные, определим дискриминант: D = 49 - 48 = 1. Значит у нашего уравнения будет два корня. Вычислим их согласно приведённой выше формуле, а это значит, что первый из них буде равен 4/3, а второй 1.

2) Теперь раскроем загадки другого рода.

Выясним, есть ли вообще здесь корни x 2 - 4x + 5 = 1? Для получения исчерпывающего ответа приведём многочлен к соответствующему привычному виду и вычислим дискриминант. В указанном примере решение квадратного уравнения производить не обязательно, ведь суть задачи заключается совсем не в этом. В данном случае D = 16 - 20 = -4, а значит, корней действительно нет.

Теорема Виета

Квадратные уравнения удобно решать через указанные выше формулы и дискриминант, когда из значения последнего извлекается квадратный корень. Но это бывает не всегда. Однако способов для получения значений переменных в данном случае существует множество. Пример: решения квадратных уравнений по теореме Виета. Она названа в честь который жил в XVI веке во Франции и сделал блестящую карьеру благодаря своему математическому таланту и связям при дворе. Портрет его можно увидеть в статье.

Закономерность, которую заметил прославленный француз, заключалась в следующем. Он доказал, что корни уравнения в сумме численно равны -p=b/a, а их произведение соответствует q=c/a.

Теперь рассмотрим конкретные задачи.

3x 2 + 21x - 54 = 0

Для простоты преобразуем выражение:

x 2 + 7x - 18 = 0

Воспользуемся теоремой Виета, это даст нам следующее: сумма корней равна -7, а их произведение -18. Отсюда получим, что корнями уравнения являются числа -9 и 2. Сделав проверку, убедимся, что эти значения переменных действительно подходят в выражение.

График и уравнение параболы

Понятия квадратичная функция и квадратные уравнения тесно связаны. Примеры подобного уже были приведены ранее. Теперь рассмотрим некоторые математические загадки немного подробнее. Любое уравнение описываемого типа можно представить наглядно. Подобная зависимость, нарисованная в виде графика, называется параболой. Различные её виды представлены на рисунке ниже.

Любая парабола имеет вершину, то есть точку, из которой выходят её ветви. В случае если a>0, они уходят высоко в бесконечность, а когда a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наглядные изображения функций помогают решать любые уравнения, в том числе и квадратные. Этот метод называется графическим. А значением переменной х является координата абсцисс в точках, где происходит пересечение линии графика с 0x. Координаты вершины можно узнать по только что приведённой формуле x 0 = -b/2a. И, подставив полученное значение в изначальное уравнение функции, можно узнать y 0 , то есть вторую координату вершины параболы, принадлежащую оси ординат.

Пересечение ветвей параболы с осью абсцисс

Примеров с решением квадратных уравнений очень много, но существуют и общие закономерности. Рассмотрим их. Понятно, что пересечение графика с осью 0x при a>0 возможно только если у 0 принимает отрицательные значения. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. В противном случае D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

По графику параболы можно определить и корни. Верно также обратное. То есть если получить наглядное изображение квадратичной функции нелегко, можно приравнять правую часть выражения к 0 и решить полученное уравнение. А зная точки пересечения с осью 0x, легче построить график.

Из истории

С помощью уравнений, содержащих переменную, возведённую в квадрат, в старину не только делали математические расчёты и определяли площади геометрических фигур. Подобные вычисления древним были нужны для грандиозных открытий в области физики и астрономии, а также для составления астрологических прогнозов.

Как предполагают современные деятели науки, одними из первых решением квадратных уравнений занялись жители Вавилона. Произошло это за четыре столетия до наступления нашей эры. Разумеется, их вычисления в корне отличались от ныне принятых и оказывались гораздо примитивней. К примеру, месопотамские математики понятия не имели о существовании отрицательных чисел. Незнакомы им были также другие тонкости из тех, которые знает любой школьник современности.

Возможно, ещё раньше учёных Вавилона решением квадратных уравнений занялся мудрец из Индии Баудхаяма. Произошло это примерно за восемь столетий до наступления эры Христа. Правда, уравнения второго порядка, способы решения которых он привёл, были самыми наипростейшими. Кроме него, подобными вопросами интересовались в старину и китайские математики. В Европе квадратные уравнения начали решать лишь в начале XIII столетия, но зато позднее их использовали в своих работах такие великие учёные, как Ньютон, Декарт и многие другие.

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье "Решение неполных квадратных уравнений".

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0 , где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b - √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2 – 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2 + х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет .

Решить уравнение 2х 2 + 5х – 7 = 0 .

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 - √81)/(2·2)= (-5 - 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1 .

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2 , затем с меньшим bx , а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равен единице и уравнение примет вид х 2 + px + q = 0 . Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а , стоящий при х 2 .

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3 . Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0 ,где x - переменная, a,b,c – константы; a<>0 . Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х) . Из этого следует, что есть три возможных случая:
1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

2) парабола имеет одну точку пересечения с осью Ох . Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения

за знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0 При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p , взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q . Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0 .

Решение: Запишем коэффициенты и подставим в формулу дискриминанта

Корень из данного значения равен 14 , его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.
Найденное значение подставляем в формулу корней

и получаем

Задача 2. Решить уравнение

2x 2 +x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант


По известным формулам находим корни квадратного уравнения

Задача 3. Решить уравнение

9x 2 -12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант

Получили случай когда корни совпадают. Находим значения корней по формуле

Задача 4. Решить уравнение

x^2+x-6=0 .

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения

С второго условия получаем, что произведение должно быть равно -6 . Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2} . С учетом первого условия вторую пару решений отвергаем.
Корни уравнения равны

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см 2 .

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
х(18-х)=77;
или
х 2 -18х+77=0.
Найдем дискриминант уравнения

Вычисляем корни уравнения

Если х=11 , то 18-х=7 , наоборот тоже справедливо (если х=7 , то 21-х=9 ).

Задача 6. Разложить квадратное 10x 2 -11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант

Подставляем найденное значение в формулу корней и вычисляем

Применяем формулу разложения квадратного уравнения по корнями

Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а , уравнение (а-3)х 2 +(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2 . Выпишем дискриминант

упростим его и приравняем к нулю

Получили квадратное уравнение относительно параметра а , решение которого легко получить по теореме Виета. Сумма корней равна 7 , а их произведение 12 . Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4 . Таким образом, при а=4 уравнение имеет один корень.

Пример 2. При каких значениях параметра а , уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение: Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3 . При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0 .
Вычислим дискриминант

и найдем значения а при котором оно положительно

С первого условия получим а>3 . Для второго находим дискриминант и корни уравнения


Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0 . Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0 , которую следует исключить, поскольку в ней исходное уравнение имеет один корень.
В результате получим два интервала, которые удовлетворяют условию задачи

Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.