Теория механизмов и машин. Практические работы

4) Вычислить частоту вращения ведомого зубчатого колеса как отношение заданной частоты вращения ведущего зубчатого колеса Мультипликатор (лат." href="/text/category/mulmztiplikator__lat_/" rel="bookmark">мультипликаторами ?

13. Почему в машинах обычно применяют редукторы?

14. В каких устройствах применяются мультипликаторы?

15. Как определить общее передаточное отношение многоступенчатой простой цилиндрической зубчатой передачи?

16. Что означает положительный знак общего передаточного отношения многоступенчатой простой цилиндрической зубчатой передачи?

17. Что означает отрицательный знак общего передаточного отношения многоступенчатой простой цилиндрической зубчатой передачи?

18. Какие Вы можете привести примеры использования зубчатых простых передач в машинах?

19. Какие Вы можете привести примеры использования зубчатых простых передач в приборах?

20. Как называют зубчатые простые передачи, у которых можно изменять передаточное отношение?

21. Каким образом в машинах выполняют изменение передаточного отношения простых зубчатых передач?

22. У редукторов передаточное отношение по абсолютной величине больше или меньше единицы?

23. У мультипликаторов передаточное отношение по абсолютной величине больше или меньше единицы?

24. Какие зубчатые передачи называются цилиндрическими?

25. Какие зубчатые передачи называются прямозубыми?

3. Кинематический анализ Сложных

зубчатых передач

3.1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Сложная зубчатая передача – это зубчатая передача, которая содержит зубчатые колеса со сложным законом движения. Различают дифференциальные и планетарные зубчатые передачи. В данной работе рассматриваются

сложные зубчатые передачи, являющиеся планетарными передачами, или состоящие из последовательно соединенных планетарных и простых зубчатых передач

Планетарная зубчатая передача - механизм с одной степенью подвижности, составленный из зубчатых колес и вращающихся звеньев, на которых располагаются подвижные оси зубчатых колес.

Водило – звено, на котором располагаются подвижные оси зубчатых колес. Ось, вокруг которой в абсолютном или относительном движении вращается водило, называется основной осью.

Сателлиты (планетарные зубчатые колеса) – зубчатые колеса с подвижными осями вращения. Сателлит с одним зубчатым венцом называется одновенцовым сателлитом , с двумя – двухвенцовым сателлитом . Планетарная передача может иметь один или несколько сателлитов одинакового размера.


Центральные зубчатые колеса – это колеса, зацепляющиеся с сателлитами и имеющие оси, совпадающие с основной осью передачи. Солнечное зубчатое колесо – вращающееся центральное зубчатое колесо с неподвижной осью вращения. Опорное зубчатое колесо – неподвижное центральное зубчатое колесо.

Простейшая четырехзвенная планетарная зубчатая передача показана на рис. 3.1.

Передача состоит из ведущего солнечного зубчатого колеса Z, входящего в зацепление с сателлитом Zhttps://pandia.ru/text/78/534/images/image082_11.gif" width="9 height=24" height="24">.gif" width="25" height="24">..gif" height="24 src=">. Индекс (3) обозначает, какое зубчатое колесо передачи является опорным (неподвижным).

Планетарная зубчатая передача – это сложная зубчатая передача, имеющая зубчатые колеса (сателлиты) со сложным законом движения. Сателлиты вращаются вокруг своей геометрической оси, одновременно оси сателлитов перемещаются вместе с водилом относительно основной оси передачи. Поэтому для определения передаточного числа этой передачи применяют метод обращенного движения . Этот метод состоит в том, что мысленно всем звеньям передачи задают угловую скорость, равную угловой скорости водила Н, но направленную противоположно ей. При этом полученный механизм называют обращенным механизмом . В этом механизме водило Н неподвижно. Планетарная зубчатая передача превратилась в простую зубчатую передачу (рис. 3.2).

https://pandia.ru/text/78/534/images/image108_8.gif" width="642" height="359">.gif" width="29" height="25 src=">.gif" width="29" height="25 src=">.gif" width="25" height="24"> = 1 - , (3.2)

3.2. Задание

Выполнить кинематический анализ сложной зубчатой передачи, в состав которой входит планетарная зубчатая передача. Схема заданной зубчатой передачи дана на рис. 3.3.

Номер схемы студенту выдает преподаватель. На схеме показано направление вращения ведущего зубчатого колеса. Частота вращения ведущего зубчатого колеса и числа зубьев всех колес этой передачи приведены в табл. 3.1. Вычислить угловую скорость и частоту вращения ведомого зубчатого колеса, показать направление вращения ведомого зубчатого колеса.

3.3. Последовательность выполнения

Изобразить кинематическую схему заданной сложной зубчатой передачи и переписать заданные исходные данные, переписать задание на практическое занятие № 3. После этого:

1. Рассматривая заданную схему механизма, сделать вывод о составе заданной передачи. Для схем на рис 3.3 может быть дан один из трех вариантов ответа: а) механизм содержит одну планетарную зубчатую передачу;


https://pandia.ru/text/78/534/images/image116_5.gif" width="642" height="840">

Рис. 3.3 Схемы механизмов с планетарными зубчатыми передачами

Рис. 3.3 (продолжение)

Рис. 3.3 (продолжение)

Рис. 3.3 (продолжение)

Рис.3.3 (окончание)

Таблица 3.1

Частота вращения ведущего звена механизма и числа зубьев колес

Частота вра-

щения веду-

щего звена

Число зубьев колеса

Целью кинематического анализа является определение угловых скоростей звеньев и передаточных отношений.

Передаточное отношение между звеньями a и b определяется как отношение их угловых скоростей (или частот вращения):

Угловые скорости и частоты вращения связаны соотношениями

;
.

Очевидно, что перестановка индексов у величины приводит к получению обратной величины, т.е.
.

Если оси вращения звеньев a и b параллельны, то передаточному отношению и угловым скоростямиприсваиваются знаки «+» или «-» по следующим правилам:

 любое из двух возможных направлений вращения принимают за положительное (обычно положительным считают направление вращения входного вала механизма), тогда угловая скорость каждого звена кинематической цепи приобретает вполне определенный знак;

 при одинаковом направлении угловых скоростей, входящих в (3.1), они имеют одинаковые знаки и, следовательно, определяют положительное передаточное отношение.

Рис. 3.1

Рис. 3.2

Очевидно, что для пары внутреннего зацепления (рис. 3.1) передаточное отношение

, (3.2)

а для пары внешнего зацепления (рис. 3.2) -

. (3.3)

3.1. Кинематика рядовых механизмов

Зубчатый механизм, у которого все звенья вращаются вокруг неподвижных осей, называют рядовым . Такой механизм может быть одноступенчатым (рис. 3.1 и 3.2) и многоступенчатым (рис. 3.3 и 3.4).

В многоступенчатом рядовом механизме число ступеней совпадает с числом зацеплений, его общее передаточное отношение определяют как произведение передаточных отношений всех последовательно соединенных ступеней.

Рис. 3.3

Рис. 3.4

Так, для трехступенчатого механизма по рис. 3.3 общее передаточное отношение
определится по формуле

На рис. 3.4 также представлен трехступенчатый механизм, у которого колеса
образуют соосную кинематическую цепь, причем колесоучаствует одновременно в двух зацеплениях – в одном как ведомое, в другом как ведущее (такие колеса называютсвязанными ); для этого механизма

Отметим, что при
(выходной валB вращается медленнее входного вала A ) механизм называют редуктором , а при
мультипликатором .

3.2. Кинематика планетарных и дифференциальных механизмов

Планетарные и дифференциальные механизмы включают в себя колеса, оси которых являются подвижными. Рычаг, на котором расположены эти оси, называют водилом , а колеса с подвижными осями – сателлитами . Неподвижная ось вращения водила является центральной осью механизма. Колеса, которые вращаются или могут вращаться относительно центральной оси и при этом зацепляются с сателлитами, называют центральными или солнечными.

В планетарную ступень входят: водило; сателлиты, размещенные на этом водиле; колеса, которые зацепляются с этими сателлитами.

Рис. 3.5

На рис. 3.5 представлен простейший планетарный механизм, состоящий из водила H , центрального колеса и сателлита.

Колесо и водилоH вращаются относительно центральной оси механизма.

Сателлит совершает сложное движение, состоящее из двух вращательных: вокруг своей геометрической оси и одновременно, вместе с водилом, вокруг центральной оси механизма.

У этого механизма две степени свободы

поэтому его называют дифференциальным механизмом , или дифференциалом . Кинематику такого механизма можно описать формулой

; (3.4)

здесь
– абсолютные угловые скорости соответствующих звеньев (величины алгебраические – положительные или отрицательные),– передаточное отношениеобращенного механизма (т.е. такого воображаемого рядового механизма, который получают из заданного планетарного мысленной остановкой водила).

Из (3.4) видно, что для кинематической определимости этого механизма из трех угловых скоростей две должны быть заданы, т.е. механизм действительно является дифференциалом.

Общий вид формулы (3.4), пригодный для описания кинематики практически любого планетарного механизма, имеет вид

; (3.5)

ее называют формулой Р. Виллиса. Здесь a и b – любые два колеса одной и той же планетарной ступени, – передаточное отношение отa к b в обращенном (рядовом) механизме, это отношение всегда выражается через числа зубьев колес.

Величины угловых скоростей имогут быть любыми; в частности, при
(т.е. колесо b неподвижно) отношение
, и тогда формула Р. Виллиса приобретает вид

. (3. 6)

Формула (3.5) более универсальна и пригодна для любого планетарного механизма, тогда как (3.6) можно применять только для таких планетарных ступеней, у которых имеются неподвижные колеса (рис. 3.6 – 3.8).

Рис. 3.6

Рис. 3.7

Рис. 3.8

На рис. 3.6 показана схема редуктора Джемса с двухвенцовым сателлитом . Для него

, (3. 7)

передаточное отношение обращенной ступени

; (3. 8)

сопоставляя (3.7) и (3.8), найдем передаточное отношение редуктора

. (3. 9)

Таким же способом найдем передаточное отношение редуктора Джемса с одновенцовым сателлитом (рис. 3.7):

, (3.10)

; (3.11)

. (3. 12)

Для редуктора Давида (рис. 3.8), также имеющего неподвижное колесо в составе ступени, входным звеном является водило H , что отличает эту схему от двух других при выводе формулы для
:

; (3.13)

; (3. 14)

. (3. 15)

В этих примерах показано применение формулы Виллиса в виде (3.6), хотя было бы вполне корректным и допустимым использование ее в виде (3.5).

Все схемы по рис. 3.6 – 3.8 имеют в своем составе три центральных звена – два центральных колеса и водило; каждое из этих звеньев нагружено вращающим моментом либо от источника движения, либо от потребителя мощности (ведомого звена), либо моментом от стойки. Такие звенья называют основными и в соответствии с их видом и количеством (в данном случае – два колеса и водило) подобным схемам присвоено обозначение типа 2 KH .

Рис. 3.9

На рис. 3.9 приведена схема планетарного механизма, содержащего четыре центральных звена: три колеса – ,,и водилоH . Однако водило в этой схеме не является основным звеном, так как оно не может быть нагружено никаким внешним вращающим моментом, поэтому данный механизм отнесен к типу 3 K (т.е. символ H в обозначение типа механизма не входит).

Найдем передаточное отношение
этого механизма:

. (3.16)

Обращенный механизм для данной схемы представляет собой разветвляющуюся рядовую кинематическую цепь, каждой из двух ее ветвей соответствует свое передаточное отношение:

;
. (3.17)

После очевидных подстановок получаем

. (3.18)

Целью работы является приобретение умения определять передаточное отношение зубчатых механизмов и абсолютные угловые скорости их звеньев.

6.1. Основные сведения из теории

Зубчатые механизмы в большинстве своем служат для передачи вращательного движения от одного вала к другому, при этом может изменяться величина и направление угловой скорости. Различают зубчатые механизмы с неподвижными осями колес (рис. 6.1 и 6.2) и механизмы, имеющие в своем составе зубчатые колеса (сателлиты), оси которых движутся в пространстве (рис. 6.3,а и 6.3,б).

В механизме зубчатые колеса, например j и k , вращаются в общем случае с разными угловыми скоростями ω j и ω k соответственно. Отношение этих угловых скоростей называется передаточным отношением и обозначается буквой i с соответствующими индексами. Таким образом, величины

являются передаточными отношениями одной и той же передачи, только в первом случае входным звеном считается колесо j, а выходным – колесо k, а во втором случае наоборот. Из выражения (6.1) следует, что

В простейших зубчатых механизмах, состоящих из двух зубчатых колес 1 и 2 , оси которых неподвижны (рис. 6.1), передаточное отношение можно выразить не только через отношение угловых скоростей, но и через отношение их чисел зубьев. Действительно, в полюсе Р имеют место следующие соотношения:

где – начальные диаметры колес 1 и 2 ; – числа зубьев колес 1 и 2 .


Таким образом, для простейшего зубчатого механизма с цилиндрическими зубчатыми колесами, оси которых неподвижны, можно записать

Знак «+» в формуле (6.3) принято ставить в том случае, когда угловые скорости колес одного направления (внутреннее зацепление, рис. 6.1,б).

В тех случаях, когда необходимо передать движение между валами, расположенными далеко друг от друга, и обеспечить большое передаточное отношение, используют сложные (многоступенчатые) зубчатые механизмы. На рис. 6.2 дан пример многоступенчатого механизма, содержащего зубчатые колеса с неподвижными осями. Общее передаточное отношение такого механизма равно произведению передаточных отношений всех зацепляющихся пар колес

Зубчатые механизмы, изображенные на рис 6.3, содержат колесо 2 (сателлит), ось которого перемещается в пространстве с помощью звена Н , называемого водилом, а также колеса 1 и 3 (рис. 6.3,а), вращающиеся вокруг неподвижной центральной оси и называемые центральными. В механизме на рис. 6.3,б одно из центральных колес (колесо 3 ) – неподвижно.

Если степень подвижности W такого механизма равна единице (рис. 6.3,б), то он называется планетарным, если двум и более – дифференциальным.


Передаточное отношение механизма можно определить с помощью метода обращения движения. Суть его заключается в том, что всем звеньям механизма мысленно дается дополнительное вращение с угловой скоростью , равной по величине угловой скорости водила в направлении, противоположном вращению водила. Если обозначить абсолютные угловые скорости (то есть скорости относительно неподвижной системы координат) звеньев реального механизма с сателлитами на рис. 6.3,а через , , , (нижние индексы соответствуют номеру звеньев), то в обращенном движении те же звенья будут иметь новые угловые скорости (обозначим их с верхним индексом Н):

Тогда водило и оси сателлитов становятся как бы неподвижными и получается так называемый обращенный механизм, представляющий собой многоступенчатый механизм с неподвижными осями колес (рис. 6.3,в).

Передаточное отношение от первого звена к третьему для обращенного механизма запишется в следующем виде

Формула (6.6) называется формулой Виллиса. Здесь – передаточное отношение простой передачи при остановленном водиле, равное


Задаваясь двумя скоростями по формуле (6.6) можно определить третью скорость. Заметим, что формулу Виллиса можно записать для двух любых звеньев. Например, по формуле

Расчёты в данном разделе будем выполнять в соответствии с методикой, изложенной в , на основании следующих исходных данных:

Z 2 =57 - число зубьев второго колеса

Z 3 =58 - число зубьев третьего зубчатого колеса

Z 4 =20 - число зубьев четвёртого зубчатого колеса

Z 5 =95 - число зубьев пятого зубчатого колеса

Z 6 =22 - число зубьев шестого зубчатого колеса

щ 1 =2с -1 - угловая скорость первого зубчатого колеса

Рассмотрим устройство данного зубчатого механизма.

Определим количество ступеней в механизме и дадим их характеристику. Пятое и шестое колесо образуют простейший ряд ступень - плоский зубчатый механизм с внутренним зацеплением. Вторая ступень, состоящая из 1,2,3,4 зубчатого колеса и рычага H - водила, является планетарным рядом с двухрядным сателлитом с двумя внешними зацеплениями.

Цель кинематического анализа.

Целью кинематического анализа является определение передаточных отношений каждой ступени и всего механизма в целом, а так же угловых скоростей отдельных указанных звеньев.

Определим число зубьев Z 1 .

Определим недостающее число зубьев планетарного механизма Z 1 . Для этого используем условие соосности центральных звеньев. Укажем межосевое расстояние между центральной осью и осью вращения сателлитов.

a=R 1 +R 2 - условие соосности центрального звена.

Z 1 =Z 3 +Z 4 -Z 2

Z 1 =58+20-57=21

Изобразим схему зубчатого механизма в масштабе.

µ z =95/95=1 1/мм

Определим размеры отрезком с помощью которых зубчатые колёса будут изображаться на колесе.

L Z5 =Z k /µ z =95/1=95мм

Кинематический анализ зубчатого механизма графическим способом.

Для выполнения анализа по данному способу необходимо выполнить кинематическую схему механизма. Кинематический анализ начинаем со входного звена.

V A =щ 1 *R A =21м/с

V В =щ 1 *R В =58м/с

Выберем масштаб построения плана линейных скоростей зубчатого механизма.

µ V =V A /(AO)=21/21=1(м/с)/мм

Для входного звена строим план линейных скоростей. Для построения плана достаточно знать скорости двух точек, так как зависимость линейная. Проецируем на полюсную линию точки, скорости которых известны. От проекции точек откладываем перпендикулярно полюсные линии в масштабе векторы линейных скоростей указанных точек. Переходим к входному звену, следующим за входным. На втором звене находим две точки, скорости которых известны. Проецируем эти точки на полюсную линию. Для найденных точек откладываем известные векторы линейных скоростей. По двум известным точкам строим план линейных скоростей. На основании построенного плана линейных скоростей изобразим диаграмму угловых скоростей звеньев. Через точку Р проводим прямые линии параллельные законам распределения линейных скоростей на плане линейных скоростей. Отрезки на лучевой диаграмме с началом в точке О и с концом в точке соответствующего номера изображают угловые скорости звеньев, так как угловая скорость входного звена известна, то можно определить масштабный коэффициент построения диаграммы.

µ щ =щ 1 /О 1 =2/1=2

Зная угловые скорости звеньев, определим передаточные отношения каждой ступени механизма и всего механизма в целом.

Кинематический анализ зубчатого механизма аналитическим способом.

Так как механизм состоит из двух ступеней, то его общее передаточное отношение можно определить как произведение передаточных отношений всех его ступеней. Вначале определим передаточное отношение простейшей зубчатой ступени.

i 56 =Z 6 /Z 5 =22/95=0,23

Рассмотрим планетарный ряд. Сложность кинематического анализа планетарного механизма состоит в том, что сателлиты совершают сложные движения и поэтому имеют угловую скорость переносного движения и относительную угловую относительно водила. Для возможности решения задачи используют принцип остановки водило. На принципе остановки водило основан метод Виллиса, суть которого заключается в следующем. Планетарный механизм мысленно заменяется обращенным механизмом.

Обобщенный механизм строится следующим образом:

1) водило считается неподвижным,

2) так как водило неподвижно, то из угловых скоростей всех звеньев вычитается угловая скорость водило,

3) для каждого зацепления можно записать формулу передаточного отношения через число зубьев,

4) с помощью математических преобразований от обращенного механизма можно перейти к планетарному механизму - исходному, и определить передаточные отношения уже для планетарного механизма.

Составим таблицу. Таблица будет содержать три колонки: 1) номер деталей, из которых состоит планетарный механизм, 2) угловые скорости звеньев в обычном движении, 3) угловые скорости звена при остановленном водило.

i 12 =(щ 2 -щ H)/(щ 1 -щ H)=-2,7

i 34 =(щ 2 -щ H)/(-щ H)=-0,34

щ 2 =щ 3 =3,06

щ 1 H =2-2,28=-0,28

щ 2 H =3,06-2,28=0,78

щ 3 H =3,06-2,28=0,78

щ 4 H =0-2,28=-2,28

Определим общее передаточное отношение всего механизма

Дано: Z1=26, Z3=74, Z4=78, Z5=26, m=2

Найти:,Z6 ,Z2

Выделим на кинематической схеме два контура:

I к =колеса 1,2,3 и водило Н.

II к =колеса 4,5,6.

Чтобы определить неизвестные значения чисел зубьев колес, составим условие соосности для каждого контура.

Z2= (Z3- Z2)/2 =(74-26)/2 =24

Z6= Z4-2* Z5=78-2*26=26

Так как m=2, то r=z.

Для построения картины скоростей замкнутого дифференциального редуктора, рассмотрим замкнутую ступень: колеса 6,5,4.

Выберем произвольный вектор скорости колеса 5 в точке С.

I к =W=3n-2P 5 -P 4 ; W=3*4-2*4-2=2 ,

механизм дифференциальный.

II к, замкнутая ступень, последовательное соединение.

W 6 =W H , W 3 =W 4

По построенной картине мгновенных скоростей построим план угловых скоростей.

По построенному плану угловых скоростей определим передаточное отношение:

Вывод

зубчатый механизм кинетостатический скорость

В ходе выполнения курсового проекта был проведен кинематический анализ механизма и построены планы скоростей и ускорений для рабочего и холостого хода механизма (3и 9положений).

В результате кинетостатического расчета были получены значения реакций кинематических парах и уравновешивающей силы для рабочего и холостого хода механизма (3 и 9положений).

В результате кинематического анализа зубчатого механизма построены картина мгновенных скоростей и план угловых скоростей, также было определено передаточное отношение.

Список использованной литературы

1. Артоболевский И. И. Теория механизмов - М.:Наука,1965 - 520 с.

2. Динамика рычажных механизмов.Ч.1. Кинематический расчет механизмов: Методические указания / Сост.:Л.Е. Белов, Л.С. Столярова - Омск: СибАДИ, 1996 г. 40 с.

3. Динамика рычажных механизмов. Ч.2. Кинетостатика: Методические указания / Сост.:Л.Е. Белов, Л.С. Столярова - Омск: СибАДИ, 1996 г. 24 с.

4. Динамика рычажных механизмов. Ч.3. Примеры кинетостатического расчета: Методические указания / Сост.:Л.Е. Белов, Л.С. Столярова - Омск: СибАДИ, 1996 г. 44 с.